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Radar Simulator
Tracker evaluation can not be done with live radar data, because live data is noisy. A radar 
simulator creates two outputs: one with noise as input for the tracker under test and one 
without noise for the error calculation. The radar simulator shall create realistic errors. To do 
this, noise is not added to the cartesian target position but to the polar target position.
The flight-path describes the movement of the target. To test the working of the turnrate- 
estimation, we need different Mode-of-Flight in the flight-path. Therefore, the target performs 
a straight line segment, a 180° left turn. another straight line segment and a 150° right turn. 
This pattern gives a flower-like flight-path with 12 "leaves". It is a departure/approach 
scenario flown with 12 different runway directions. 

Abstract: A maneuver in the traditional Kalman Filter is estimated with a straight line 
model and a lot of process noise. Normally a maneuver is flown as "coordinated turn", that 
is an arc with constant angular velocity (turnrate).
It is possible to use turnrate as a state-variable in an Extended Kalman Filter. If the system 
has only incomplete measurements, like Line-of-Sights, an EKF is a must. In Air Traffic 
Control where complete measurements are available the EKF is not welcome.
The Interactive Multi Model Kalman Filter uses a bank of Kalman Filters for different 
Mode-of-Flight models. Typically there is a straight line, a 3°/s left-turn and a 3°/s right-turn 
KF in the IMMKF. Unfortunately only a small minority of aircrafts perform "standard turns". 
Most aircraft fly 2°/s, 4°/s or whatever turns. Furthermore, the IMMKF is expensive in 
computation.
The turnrate estimation in the AMRT is a very straightforward algorithm. A measurement- 
heading is calculated out of two position informations (plots) as delivered from the sensor, a 
surveillance radar. With two headings and the time difference one measurement-turnrate can 
be calculated. Up to now everything is simple mathematics. The topic goes "statistical" due 
to the measurement noise. To get rid of the measurement noise two strategies are used:
First, the heading calculation is not done with adjacent plots, but with plots that are n 
measurement intervals apart. With larger n the "truth" overcomes more and more the 
"noise", but maneuver detection time gets larger, too. The paper will show the methods that 
were used to find the optimum n for a given scenario.
Second, a "smoothed turnrate" can be used as input-variable to the Kalman Filter. The 
paper shows the tested algorithms and the advantages/disadvantages to the position 
accuracy at the output of the Kalman Filter.
The presented turnrate-estimation algorithm is much cheaper in computation then the EKF 
or IMMKF. Nevertheless it gives the "good old linear" KF a better coordinated turn 
maneuver capability.
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The groundspeed is 200 nautical miles per hour (Knots), the turnrate is 3°/s. Radar scantime is 
5 seconds, range standard deviation is 0.04 nautical miles (NM), azimuth is 0.07° and detection 
probability is 100%. The straight line segments are 15 NM long. The radar is located at the 
center of the "flower".

first 11 "leaves" of Flight-Path

Confirmation by Monte Car lo Simulation
"Who can, do. Who can not, simulate". The author is not able to perform a mathematical 
analysis for the problem of turnrate-estimation, therefore a Monte Carlo simulation is used as 
surrogate. Everytime a simulation is used instead of an analysis the risk of hyping a stupid 
idea is given.
After Monte Carlo simulations are finished successful, a system goes into use. In the real 
world the Monte Carlo results get confirmed or not. If, after some years of use, the system has  
a good reputation, one can assume that the simulation results were transferable.
Still a little caution: Humans tend to superstition. Sometimes null changes create a good 
feeling in everybody: We have done something, the problem went away, we did the RIGHT 
THING(TM). Instead, the problem has just gone away for a while, and will come back later, 
ruining the believe in the right thing.
For example: In Germany we have every winter problems with primary clutter that goes away 
every spring. A good candidate for null, void or invalid changes.

Turnrate Estimation Algor ithm 1
The first algorithm estimates the turnrate on "measurement headings". In real use the following 
formulas would be part of the tracking algorithm. One new plot comes in, the heading and 
turnrate estimates are calculated and with this input-variable the Kalman Filter is evaluated.
For demonstration it is easier to run the turnrate-estimate as block algorithm. The interval length 
is 4, that is the heading is calculated with the new plot and the 4. last plot.
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Error calculation is done with the absolute difference. For successful tracker evaluation the 
maximum error is the most critical value.
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Turnrate estimate with interval n=4
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The diagrams show the estimated turnrate for a left turn and for a right turn. The thin line is 
the turnrate without noise, the thick line is the estimate. One can see that the interval creates a 
delay in Mode-of-Flight change detection. This is the typical trade-off between an agile 
system responding with a lot of noise and an inert system responding with less noise. The 
x-axis has plot number as unit.
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Turnrate Estimation Algor ithm 2
The second algorithm estimates the turnrate on "smoothed headings", that is on the 
state-variables of the Kalman-Filter. This approach has the disadvantage that the turnrate- 
estimate is calculated after the KF algorithm. We will see that the advantage of using 
smoothed heading overcomes the disadvantage of having a delayed turnrate-estimate.
But first the presentation of our KF. We use a position/velocity KF with state vector y 
elements x-position, x-velocity, y-position and y-velocity. The sensor-errors are transformed 
from polar to cartesian with matrix R. The measurement matrix H shows that we have 
position-only measurements. The covariance matrix P is initialized with some "large numbers", 
that the KF algorithm will quickly reduce to correct numbers. Q, the process noise matrix uses 
a "piecewise constant white acceleration" model. We use a "coordinated turn" transition 
matrix F. Process noise σa is 0.1 gravo. Smoothed turnrate is w.
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With algorithm 2 the maximum error is smaller. Now we compare the position accuracy of the 
turnrate-estimating KF with the traditional KF.
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Like above we can calculate the turnrate-errors.
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Further  Results
Tests with Interval lengths from 1 to 5 plots were performed. The best results are with n=3 or 
n=4. Every Turnrate-Estimate KF algorithm was better then the traditional KF.
The TEMPO Evaluation tested the multi-radar case with algorithm 1. The results are mixed. In 
en-route scenario, where all radars are more then 60 NM away from the targets, errors became 
smaller. In approach scenario with 2 airport surveillance radars algorithm 1 performed worse 
then the previous software version.
We have to TEMPO test algorithm 2 and have to check if the bad performance of the last 
software version does not have other reasons. "Bad performance" is relativ. The maximum 
position errors are good enough to pass the TEMPO evaluation.

The Reduction of standard-deviation error is half of the reduction from the turnrate-estimate 
KF. The difference in performance for maximum errors is less.
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